Aplikasi UTS


Dispenser Otomatis



1. Tujuan[Back]
  • Mengetahui dan Memahami Penggunaan Aplikasi Dioda, Transistor Bipolar, Transistor Unipolar, dan Op-Amp dalam suatu rangkaian.
  • Dapat membuat simulasi tugas besar dengan judul "Dispenser Otomatis"
  • Mampu menjelaskan prinsip kerja dari Dispenser Otomatis
2. Alat dan Bahan[Back]
A. Alat
  • Baterai 

           Gambar Baterai

         Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya. Dengan adanya Baterai, kita tidak perlu menyambungkan kabel listrik untuk dapat mengaktifkan perangkat elektronik kita sehingga dapat dengan mudah dibawa kemana-mana. Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable).

  • Power Supply

Power Supply berfungsi sebagai sumber energi listrik untuk menyuplai tegangan atau arus listrik
B. Bahan
  • Resistor


Specifications 
Resistance (Ohms)2,2K,10K,90K, 440K
Power (Watts)0.25W, 1/4W
Tolerance±5%
PackagingBulk
CompositionCarbon Film
Temperature Coefficient350ppm/°C
Lead Free StatusLead Free
RoHS StatusRoHS Compliant
  • Dioda 1N4001



A. Spesifikasi :
  • Package Type: Available in DO-41 & SMD Packages
  • Diode Type: Silicon Rectifier General Usage Diode
  • Max Repetitive Reverse Voltage is: 1000 Volts
  • Average Fwd Current: 1000mA
  • Non-repetitive Max Fwd Current: 30A
  • Max Power Dissipation is: 3W
  • Max Storage & Operating temperature Should Be: -55 to +175 Centigrade
B.  Konfigurasi Pin:

Nomor Pin

Nama Pin

Deskripsi

1

Anoda

Arus selalu Masuk melalui Anoda

2

Katoda

Arus selalu Keluar melalui Katoda

  • Induktor

A. Spesifikasi
• 11.2 x 11.2 x 9.0mm maximum surface mount package
• Ferrite core material 
• High current carrying capacity, low core losses 
• Controlled DCR tolerance for sensing circuits 
• Inductance range from 205nH to 950nH 
• Current range from 11.5 to 69 amps 
• Frequency range up to 2MHz
• Storage temperature range (component): -40 °C to +125 °C 
• Operating temperature range: -40 °C to +125 °C (ambient plus self-temperature rise) 
• Solder reflow temperature: J-STD-020 (latest revision) compliant

  • Kapasitor 
A. Spesifikasi

• ESR: 6mΩ to 70mΩ
• Voltage: 2V to 16V
• Capacitance: 6.8µF to 470µF
• Operating Temperature: -55°C to 125°C
• Polymer cathode technology
• High frequency capacitance retention
• Non-ignition failure mode
• 100% accelerated steady state aging
• 100% surge current tested
• Volumetric efficiency
• Self-healing mechanism
• EIA standard case sizes


  • Transistor NPN BC547

A. Konfigurasi Pin
1. Collector
2.  Base
3. Emitter

B. Spesifikasi :
Transistor Type : NPN
Voltage – Collector Emitter Breakdown (Max) : 45 V
Current- Collector (Ic) (Max) : 100mA
Power – Max : 625 mW
DC Current Gain (hFE) (Min) @ Ic, Vce : 110 @ 2mA, 5V
Vce Saturation (Max) @ Ib Ic : 300mV, @ 5mA, 100mA
Frequency – Transition : 300MHz
Current- Collector Cutoff (Max) : -
Mounting Type : Through Hole
Package / Case : TO-226-3, TO-92-3 (TO-226AA) Formed Leads
Packaging : Tape & Box (TB
Lead Free Status : Lead Free
RoHs Status : RoHs Compliant

  • Transistor 2N7000




 

    Spesifikasi dari 2N7000 :

             ·         Small signal N-Channel MOSFET

                   ·         Drain-Source Voltage (VDS) is 60V

                   ·         Continuous Drain Current (ID) is 200mA

                   ·         Pulsed Drain Current (ID-peak) is 500mA

                   ·         Gate threshold voltage (VGS-th) is 3V

                   ·         Gate-Source Voltage is (VGS) is ±20V

                   ·         Turn ON and Turn off time is 10ns each        

                   ·         Available in To-92 Package


                             Konfigurasi 2N7000 :

  • Sensor Infrared

A. Konfigurasi Pin

Pin Name

Description

VCC

Power Supply Input

GND

Power Supply Ground

OUT

Active High Output


B. Spesifikasi
  • 5VDC Operating voltage

  • I/O pins are 5V and 3.3V compliant

  • Range: Up to 20cm

  • Adjustable Sensing range

  • Built-in Ambient Light Sensor

  • 20mA supply current

  • Mounting hole

  • Size: 50 x 20 x 10 mm (L x B x H)

  •  Hole size: φ2.5mm

C. Grafik Respon
Gambar grafik respon Sensor Infrared

  • Water Sensor


A. Spesifikasi Water Sensor

            1.      Tegangan kerja: 5V

            1.      Bekerja Saat Ini: <20ma

            2.      Antarmuka: Analog

            3.      Lebar deteksi: 40mm × 16mm

            4.      Suhu Kerja: 10  ~ 30 

            5.      Berat: 3g

            6.      Ukuran: 65mm × 20mm × 8mm

            7.      Antarmuka yang kompatibel dengan Arduino

            8.      Konsumsi daya rendah

            9.      Sensitivitas tinggi

            10.  Sinyal tegangan keluaran: 0 ~ 4.2V


B. Konfigurasi pin
. S = Signal Input
. + = VCC
. - = GND

C. Grafik Respon



LM35


Spesifikasi LM35 :
·Dikalibrasi Langsung dalam Celcius (Celcius)
·Faktor Skala Linear + 10-mV / ° C
·0,5 ° C Pastikan Akurasi (pada 25 ° C)
·Dinilai untuk Rentang Penuh −55 ° C hingga 150 ° C
·Cocok untuk Aplikasi Jarak Jauh
·Biaya Rendah Karena Pemangkasan Tingkat Wafer
·Beroperasi Dari 4 V hingga 30 V
·Pembuangan Arus Kurang dari 60-μA
·Pemanasan Mandiri Rendah, 0,08 ° C di Udara Diam
·Hanya Non-Linearitas ± ¼ ° C Tipikal
·Output Impedansi Rendah, 0,1 Ω untuk Beban 1-mA 
                         
Konfigurasi LM35:

C. Grafik Respon
  • NTC


Spesifikasi NTC :
·Resistensi pada 25 derajat C: 10K + - 1%
·Nilai-B (konstanta material) = 3950 + - 1%
·Faktor disipasi (tingkat kehilangan energi dari mode osilasi) δ th = (di udara) kira-kira 7,5mW / K
·Konstanta waktu pendinginan termal <= (di udara) 20 detik
·Kisaran suhu termistor -55 ° C hingga 125 ° C
                         Konfigurasi NTC:

C. Grafik Respon
  • LM358




A. Spesifikasi
• Short Circuit Protected Outputs 
• True Differential Input Stage 
• Single Supply Operation: 3.0 V to 32 V 
• Low Input Bias Currents 
• Internally Compensated 
• Common Mode Range Extends to Negative Supply 
• Single and Split Supply Operation 
• ESD Clamps on the Inputs Increase Ruggedness of the Device without Affecting Operation 
• NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable 
• These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant



  • POT- HG


A. Spesifikasi
  • Type: Rotary a.k.a Radio POT
  • Available in different resistance values like 500Ω, 1K, 2K, 5K, 10K, 22K, 47K, 50K, 100K, 220K, 470K, 500K, 1 M. 
  • Power Rating: 0.3W
  • Maximum Input Voltage: 200Vdc
  • Rotational Life: 2000K cycles

B. Konfigurasi PIN

Pin No.

Pin Name

Description

1

Fixed End

This end is connected to one end of the resistive track

2

Variable End

This end is connected to the wiper, to provide variable voltage

3

Fixed End

This end is connected to another end of the resistive track


                 Konfigurasi potentiometer:

  • Relay 

A. Konfigurasi PIN Relay

Nomor PIN

Nama Pin

Deskripsi

1

Coil End 1

Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 12V dan ujung lainnya ke ground

2

Coil End 2

Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 12V dan ujung lainnya ke ground

3

Common (COM)

Common terhubung ke salah satu Ujung Beban yang akan dikontrol

4

Normally Close (NC)

Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NC beban tetap terhubung sebelum pemicu

5

Normally Open (NO)

Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NO, beban tetap terputus sebelum pemicu

B. Spesifikasi :
  • Trigger Voltage (Voltage across coil) : 12V DC
  • Trigger Current (Nominal current) : 70mA
  • Maximum AC load current: 10A @ 250/125V AC
  • Maximum DC load current: 10A @ 30/28V DC
  • Compact 5-pin configuration with plastic moulding
  • Operating time: 10msec Release time: 5msec
  • Maximum switching: 300 operating/minute (mechanically)

  • Buzzer


A. Konfigurasi PIN Buzzer

1

Positif

Diidentifikasi dengan simbol (+) atau kabel terminal yang lebih panjang. Dapat didukung oleh 12V DC 

2

Negatif

Diidentifikasi oleh kabel terminal pendek. Biasanya terhubung ke ground sirkuit

B. Spesifikasi Buzzer
1. Rated Voltage : 12V 
2. DC Operating Voltage : 4 to 8V 
3. DC Rated Current* : ≤30mA 
4. Sound Output at 10cm* : ≥85dB 
5. Resonant Frequency : 2300 ±300Hz 
6. Tone : Continuous 
7. Operating Temperature : -25°C to +80°C 
8. Storage Temperature : -30°C to +85°C
9. Weight : 2g 
*Value applying at rated voltage (DC)

    • LED

      a. Spesifikasi :

      * Superior weather resistance

      * 5mm Round Standard Directivity

      * UV Resistant Eproxy

      * Forward Current (IF): 30mA

      * Forward Voltage (VF): 1.8V to 2.4V

      * Reverse Voltage: 5V

      * Operating Temperature: -30℃ to +85℃

      * Storage Temperature: -40℃ to +100℃

      * Luminous Intensity: 20mcd

      b. Konfigurasi Pin :  

      * Pin 1 : Positive terminal of LED

      * Pin 2 : Negative terminal of LED

    • Motor DC



    A. Konfigurasi PIN

    No:

    Pin Name

    Description

    1

    Terminal 1

    A normal DC motor would have only two terminals. Since these terminals are connected together only through a coil they have not polarity. Revering the connection will only reverse the direction of the motor

    2

    Terminal 2

     

    B. DC Motor Specifications

    • Standard 130 Type DC motor
    • Operating Voltage: 4.5V to 9V
    • Recommended/Rated Voltage: 6V
    • Current at No load: 70mA (max)
    • No-load Speed: 9000 rpm
    • Loaded current: 250mA (approx)
    • Rated Load: 10g*cm
    • Motor Size: 27.5mm x 20mm x 15mm
    • Weight: 17 grams

    • Push Button Switch

    Push button switch (saklar tombol dorong) adalah jenis saklar dua posisi yang dapat menghubungkan aliran arus listrik pada saat pengguna menekannya dan memutuskan hubungan listrik tersebut apabila kita melepaskannya.

    • Voltmeter

    Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.


    •  Heater
    Pemanas adalah sebuah objek yang memancarkan panas atau menyebabkan tubuh lain untuk mencapai suhu yang lebih tinggi. Dalam pengaturan rumah tangga atau domestik, pemanas biasanya berupa peralatan yang tujuannya adalah untuk menghasilkan pemanasan
    • Logic State
    Gerbang logika atau logic State adalah suatu entitas dalam elektronika dan matematika Boolean yang mengubah satu atau beberapa masukan logik menjadi sebuah sinyal keluaran logik. Gerbang Logika beroperasi berdasarkan sistem bilangan biner yaitu bilangan yang hanya memiliki 2 kode simbol yakni 0 dan 1 dengan menggunakan Teori Aljabar Boolean.

    • Ground
    Ground Berfungsi sebagai untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus pada rangkaian

    3. Dasar Teori[Back]

    • RESISTOR 

    Resistor merupakan komponen elektronika dasar yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian.Sesuai dengan namanya, resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Resistor memiliki simbol seperti gambar dibawah ini :


    Simbol Resistor

    Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :


    Dimana V adalah tegangan,  I adalah kuat arus, dan R adalah Hambatan.

    Di dalam resistor, terdapat ketentuan untuk membaca nilai resistor yang diwakili dengan kode warna dengan ketentuan di bawah ini :



    Sebagian besar resistor yang kita lihat memiliki empat pita berwarna . Oleh karena itu ada cara membacanya seperti ketentuan dibawah ini :
    1. Dua pita pertama dan kedua menentukan nilai dari resistansi
    2. Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.
    3. Dan terakhir, pita keempat menentukan nilai toleransi.


    Rumus Resistor:

    Seri : Rtotal = R1 + R2 + R3 + ….. + Rn

    Dimana :
    Rtotal = Total Nilai Resistor
    R1 = Resistor ke-1
    R2 = Resistor ke-2
    R3 = Resistor ke-3
    Rn = Resistor ke-n

    Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

    Dimana :
    Rtotal = Total Nilai Resistor
    R1 = Resistor ke-1
    R2 = Resistor ke-2
    R3 = Resistor ke-3
    Rn = Resistor ke-n


    • Dioda
    Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
    Gambar Simbol Dioda

    Cara Kerja Dioda

    Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

    A. Kondisi tanpa tegangan

    Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.

    cara kerja dioda

    B. Kondisi tegangan positif (Forward-bias)

    Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.

    dioda tanpa tegangan

    C. Kondisi tegangan negatif (Reverse-bias)

    Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.

    kondisi tegangan negatif

    3. Rumus

    rumus

    • Transistor NPN
    Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:
    Simbol Transistor NPN BC547


    Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:

    Rumus dari Transitor adalah :

    hFE = iC/iB

    dimana, iC = perubahan arus kolektor 

    iB = perubahan arus basis 

    hFE = arus yang dicapai


    Rumus dari Transitor adalah :

    Karakteristik Input

    Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.

    Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

     Karakteristik Output

    Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

    Gelombang I/O Transistor


    • Kapasitor




    Kapasitor atau disebut juga dengan kondensator adalah komponen elektronika pasif yang dapat menyimpan energi atau muatan listrik dalam sementara waktu. Fungsi kapasitor (kondensator) di antaranya adalah dapat memilih gelombang radio pada rangkaian tuner, sebagai perata arus pada rectifier dan juga sebagai filter di dalam Rangkaian Power Supply (Catu Daya). Satuan nilai untuk kapasitor (kondensator) adalah Farad (F).

    Rumus Kapasitas Kapasitor

     


     

                    Rumus Kapasitor Keping Sejajar (Udara)


                    Rumus Kapasitor Keping Sejajar (Medium)

     


     

                    Rumus Kapasitas Kapasitor Bentuk Bola

     



    • Induktor




     Induktor atau dikenal juga dengan Coil adalah Komponen Elektronika Pasif yang terdiri dari susunan lilitan Kawat yang membentuk sebuah Kumparan. Pada dasarnya, Induktor dapat menimbulkan Medan Magnet jika dialiri oleh Arus Listrik. Medan Magnet yang ditimbulkan tersebut dapat menyimpan energi dalam waktu yang relatif singkat. Dasar dari sebuah Induktor adalah berdasarkan Hukum Induksi Faraday.

    Kemampuan Induktor atau Coil dalam menyimpan Energi Magnet disebut dengan Induktansi yang satuan unitnya adalah Henry (H). Satuan Henry pada umumnya terlalu besar untuk Komponen Induktor yang terdapat di Rangkaian Elektronika. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Henry digunakan untuk menyatakan kemampuan induktansi sebuah Induktor atau Coil. Satuan-satuan turunan dari Henry tersebut diantaranya adalah milihenry (mH) dan microhenry (µH). Simbol yang digunakan untuk melambangkan Induktor dalam Rangkaian Elektronika adalah huruf “L”.

    Simbol Induktor

    Berikut ini adalah Simbol-simbol Induktor :

    Simbol-simbol Induktor (Coil)

    Simbol Induktor di proteus :




    Nilai Induktansi sebuah Induktor (Coil) tergantung pada 4 faktor, diantaranya adalah :

    • Jumlah Lilitan, semakin banyak lilitannya semakin tinggi Induktasinya
    • Diameter Induktor, Semakin besar diameternya semakin tinggi pula induktansinya
    • Permeabilitas Inti, yaitu bahan Inti yang digunakan seperti Udara, Besi ataupun Ferit.
    • Ukuran Panjang Induktor, semakin pendek inductor (Koil) tersebut semakin tinggi induktansinya.

    Jenis-jenis Induktor (Coil)

    Berdasarkan bentuk dan bahan inti-nya, Induktor dapat dibagi menjadi beberapa jenis, diantaranya adalah :

    • Air Core Inductor – Menggunakan Udara sebagai Intinya
    • Iron Core Inductor – Menggunakan bahan Besi sebagai Intinya
    • Ferrite Core Inductor – Menggunakan bahan Ferit sebagai Intinya
    • Torroidal Core Inductor – Menggunakan Inti yang berbentuk O Ring (bentuk Donat)
    • Laminated Core Induction – Menggunakan Inti yang terdiri dari beberapa lapis lempengan logam yang ditempelkan secara paralel. Masing-masing lempengan logam diberikan Isolator.
    • Variable Inductor – Induktor yang nilai induktansinya dapat diatur sesuai dengan keinginan. Inti dari Variable Inductor pada umumnya terbuat dari bahan Ferit yang dapat diputar-putar.

    Fungsi Induktor (Coil) dan Aplikasinya

    Fungsi-fungsi Induktor atau Coil diantaranya adalah dapat menyimpan arus listrik dalam medan magnet, menapis (Filter) Frekuensi tertentu, menahan arus bolak-balik (AC), meneruskan arus searah (DC) dan pembangkit getaran serta melipatgandakan tegangan.

    Berdasarkan Fungsi diatas, Induktor atau Coil ini pada umumnya diaplikasikan :

    • Sebagai Filter dalam Rangkaian yang berkaitan dengan Frekuensi
    • Transformator (Transformer)
    • Motor Listrik
    • Solenoid
    • Relay
    • Speaker
    • Microphone
    • Sensor Infrared
    Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar. Sensor infrared memiliki simbol seperti gambar di bawah ini :


    Prinsip Kerja Sensor Infrared
     



    Gambar 1. Ilustrasi prinsip kerja sensor infrared

    Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.


    Gambar 2. Rangkaian dasar sensor infrared common emitter yang menggunakan led infrared dan fototransistor 


    Grafik Respon Sensor Infrared
     

    Gambar 4. Grafik respon sensor infrared

    Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.

    •  NTC

    Thermistor adalah salah satu jenis Resistor yang nilai resistansi atau nilai hambatannya dipengaruhi oleh Suhu (Temperature). Thermistor merupakan singkatan dari “Thermal Resistor” yang artinya adalah Tahanan (Resistor) yang berkaitan dengan Panas (Thermal). Thermistor terdiri dari 2 jenis, yaitu Thermistor NTC (Negative Temperature Coefficient) dan Thermistor PTC (Positive Temperature Coefficient).

    Komponen Elektronika yang peka dengan suhu ini pertama kali ditemukan oleh seorang ilmuwan inggris yang bernama Michael Faraday pada 1833. Thermistor yang ditemukannya tersebut merupakan Thermistor jenis NTC (Negative Temperature Coefficient). Michael Faraday menemukan adanya penurunan Resistansi (hambatan) yang signifikan pada bahan Silver Sulfide ketika suhu dinaikkan. Namun Thermitor komersil pertama yang dapat diproduksi secara massal adalah Thermistor ditemukan oleh Samuel Ruben pada tahun 1930. Samuel Ruben adalah seorang ilmuwan yang berasal dari Amerika Serikat.

    Simbol NTC :




                    Karakteristik NTC:
    • E-MOSFET

    E-MOSFET (Enhancement-metal-oxide semiconductor FET) adalah MOSFET tipe peningkatan yang terdiri dari E-MOSFET kanal-P dan E-MOSFET kanal-NE-MOSFET kanal-P dan E-MOSFET kanal-N pada dasarnya sama, yang berbeda hanyalah polaritas pada pemberian biasnya saja.

    Rumus dari E-MOSFET adalah :

    Hubungan antara arus ID dengan VGS tidak lagi mengikuti persamaan Shockley sebagaimana pada JFET dan D-MOSFET, akan tetapi mengikuti persamaan dibawah. Persamaan ini berlaku untuk VGS > VT.

    Persamaan Arus Drain ID E-MOSFET

     

    Simbol 2N700 di proteus :




                      Grafik 2N7000

    •  Water Sensor

    Water level merupakan sensor yang berfungsi untuk mendeteksi ketinggian air dengan output analog kemudian diolah menggunakan mikrokontroler. Cara kerja sensor ini adalah pembacaan resistansi yang dihasilkan air yang mengenai garis lempengan pada sensor. Semakin banyak air yang mengenai lempengan tersebut, maka nilai resistansinya akan semakin kecil dan sebaliknya.

                 Simbol water sensor di proteus:

    Grafik Respon :

    •  LM35

    Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.

    Meskipun tegangan sensor ini dapat mencapai 30 volt akan tetapi yang diberikan kesensor adalah sebesar 5 volt, sehingga dapat digunakan dengan catu daya tunggal dengan ketentuan bahwa LM35 hanya membutuhkan arus sebesar 60 µA hal ini berarti LM35 mempunyai kemampuan menghasilkan panas (self-heating) dari sensor yang dapat menyebabkan kesalahan pembacaan yang rendah yaitu kurang dari 0,5ºC pada suhu 25ºC 

    Simbol LM35 di proteus :


                    Respon sensor:

    • Potensiometer

    Potensiometer (POT) adalah salah satu jenis Resistor yang Nilai Resistansinya dapat diatur sesuai dengan kebutuhan Rangkaian Elektronika ataupun kebutuhan pemakainya. Potensiometer merupakan Keluarga Resistor yang tergolong dalam Kategori Variable Resistor. Secara struktur, Potensiometer terdiri dari 3 kaki Terminal dengan sebuah shaft atau tuas yang berfungsi sebagai pengaturnya.

    • OP-AMP

    Simbol 

     

     
    Berfungsi sebagai penguat atau pembanding tegangan input dengan output.

     

     

    Karakteristik IC OpAmp

    • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
    • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
    • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
    • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
    • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
    • Karakteristik tidak berubah dengan suhu
                                                                               

    Karakteristik IC OpAmp

    • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
    • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
    • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
    • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
    • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
    • Karakteristik tidak berubah dengan suhu

    Inverting Amplifier


     Rumus:

    NonInverting

     Rumus:

    Komparator

    Rumus:

    Adder

    Rumus:

    Bentuk Gelombang
    • Relay
    Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A. Relay memiliki simbol seperti gambar di bawah ini :






    Gambar Simbol Relay

       
    Kapasitas Pengalihan Maksimum:

    Cara Kerja Relay :
    1. Apabila coil diberikan arus listrik, maka akan timbul gaya elektromagnetik yang dapat menarik armature untuk merubah switch contact point.
    2. Apabila coil tersebut sudah tidak dialiri arus listrik, maka Armature akan kembali lagi ke posisi Normally Close.
    3. Umumnya, coil yang digunakan oleh relay untuk mengubah switch contact point ke posisi NC hanya membutuhkan arus listrik yang kecil.

    • Buzzer

    Buzzer   adalah   sebuah   komponen   elektronika   yang   berfungsi   untuk   mengubah  getaran  listrik  menjadi  getaran  suara  getaran  listrik  menjadi  getaran  suara.  Pada  dasarnya  prinsip  kerja buzzer  hampir  sama  dengan  loudspeaker,  jadi  buzzer  juga  terdiri  dari  kumparan  yang  terpasang  pada  diafragma  dan  kemudian  kumparan  tersebut  dialiri  arus  sehingga  menjadi  elektromagnet,  kumparan  tadi  akan  tertarik  ke  dalam  atau  keluar,  tergantung  dari  arah  arus  dan  polaritas  magnetnya,  karena  kumparan  dipasang  pada  diafragma  maka  setiap  gerakan  kumparan  akan  menggerakkan  diafragma  secara  bolak-balik  sehingga  membuat udara  bergetar  yang  akan  menghasilkan  suara.  Buzzer  biasa  digunakan  sebagai  indikator bahwa proses telah selesai atau terjadi suatu kesalahan pada sebuah alat (alarm).

    Cara Kerja Buzzer pada saat aliran listrik atau tegangan listrik yang mengalir ke rangkaian yang menggunakan piezoeletric tersebut. Piezo buzzer dapat bekerja dengan baik dalam menghasilkan frekwensi di kisaran 1 - 6 kHz hingga 100 kHz. Buzzer memiliki simbol seperti gambar di bawah ini :

    Gambar Simbol Buzzer

      • Light Emitting Code (LED)
        Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

          Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya.  Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube.

      Simbol dan Bentuk LED (Light Emitting Diode)Bentuk dan Simbol LED (Light Emitting Diode)


      Cara Kerja LED (Light Emitting Diode)

      Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

      LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

      Cara kerja LED (Light Emitting Diode)

      LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya


      • Motor DC
           Motor DC adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya.
      Simbol DC Motor :



      Cara Kerja Motor DC :
              Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.Kecepatan putar motor DC (N) dirumuskan dengan Persamaan berikut.

      • Logic State


      Gerbang logika atau logic State adalah suatu entitas dalam elektronika dan matematika Boolean yang mengubah satu atau beberapa masukan logik menjadi sebuah sinyal keluaran logik. Gerbang Logika beroperasi berdasarkan sistem bilangan biner yaitu bilangan yang hanya memiliki 2 kode simbol yakni 0 dan 1 dengan menggunakan Teori Aljabar Boolean.

      • Push Button Switch


      Push button switch (saklar tombol dorong) adalah jenis saklar dua posisi yang dapat menghubungkan aliran arus listrik pada saat pengguna menekannya dan memutuskan hubungan listrik tersebut apabila kita melepaskannya.

      • Voltmeter
      Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.


      • Ground
      Ground Berfungsi sebagai untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus pada rangkaian


      • Heater

      Pemanas adalah sebuah objek yang memancarkan panas atau menyebabkan tubuh lain untuk mencapai suhu yang lebih tinggi. Dalam pengaturan rumah tangga atau domestik, pemanas biasanya berupa peralatan yang tujuannya adalah untuk menghasilkan pemanasan

      • Baterai

      Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya. Dengan adanya Baterai, kita tidak perlu menyambungkan kabel listrik untuk dapat mengaktifkan perangkat elektronik kita sehingga dapat dengan mudah dibawa kemana-mana. Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable). Baterai simbol seperti gambar di bawah ini:

      Gambar Simbol Baterai

      • Power Supply
      Power supply atau pencatu daya adalah sebuah alat elektronik yang berfungsi memberikan tegangan dan arus listrik pada komponen-komponen lainnya. Pada dasarnya power supply membutuhkan sumber listrik yang kemudian diubah menjadi sumber daya yang dibutuhkan oleh berbagai perangkat elektronik lainnya. Arus listrik yang disalurkan oleh power supply ini adalah jenis arus bolak-balik (AC). Namun karena kelebihan dari power supply ini, maka alat ini juga dapat mengubah arus bolak-balik (AC) menjadi arus searah (DC). Power supply memiliki simbol sebagai berikut :
      Gambar simbol power supply
      4. Percobaan[Back]
      A. Prosedur Percobaan

      Step 1:SUSUN dan SIAPKAN KOMPONEN 

      Step 2:RANGKAI KOMPONEN

      Step 3: BUAT SIMULASI PADA PROTEUS

      Step 4: MENCOBA RANGKAIAN

      Step 5: MENERAPKAN RANGKAIAN


      B. Rangkaian Simulasi

      • Foto Rangkaian




       



      Saat Belum aktif











      Saat sudah aktif


      • Prinsip Kerja
      A. Prinsip Kerja Sensor Infrared
      Saat logic state berlogika 0, artinya sensor Infrared belum mendeteksi adanya gelas kosong, .Kemudian tegangan yang dikeluarkan di kaki Vout sebesar 0 V, Kemudian diteruskan ke rangkaian op-amp non  inverting amplifier dan menggunakan rumus Vo = (R7/R25+1).Vin, Vo = (20k/10k + 1).0 sehingga tegangan yang keluar dari Vo sebesar 0 volt. Kemudian diumpankan ke R5 dan diteruskan ke rangkaian detektor dan tegangan yang terbaca di kaki non inverting sebesar 0 mV sedangkan di kaki inverting tegangan yang terbaca sebesar +925 mV. Kemudian dengan menggunakan rumus Detektor yaitu Vo= tegangan di kaki non inverting-tegangan di kaki inverting di kali Aol, sehingga hasilnya Vo=0-(+925) dikali Aol yang sangat besar dan didapatkan tegangan output yang terbaca sebesar -15V. Kemudian dari Vo rangkaian detektor diumpankan ke resistor R4 dan diteruskan ke rangkaian Fixed Bias , dan tegangan yang terbaca di kaki base transistor Q2 sebesar -1,01V. Seperti yang kita ketahui bahwa tegangan tersebut belum cukup untuk mengaktifkan transistor Q2 dan menyebabkan tidak adanya arus yang mengalir dari power supply +12V kemudian diteruskan ke relay, ke kaki collector dan kaki emitor dan diteruskan ke ground. Dengan tidak adanya arus yang mengalir maka switch relay masih berada di sebelah kanan dan rangkaian tidak membentuk loop dan buzzer dan pompa air pun off.

      Saat logic state berlogika 1, artinya sensor Infrared mendeteksi adanya gelas kosong, .Kemudian tegangan yang dikeluarkan di kaki Vout sebesar 5 V, Kemudian diteruskan ke rangkaian op-amp non  inverting amplifier dan menggunakan rumus Vo = (R7/R25+1).Vin, Vo = (20k/10k+ 1).5 sehimgga tegangan yang keluar dari Vo sebesar 15 volt. Kemudian diumpankan ke R5 dan diteruskan ke rangkaian detektor dan tegangan yang terbaca di kaki non inverting sebesar 15V sedangkan di kaki inverting tegangan yang terbaca sebesar +925 mV. Kemudian dengan menggunakan rumus Detektor non inverting yaitu Vo= tegangan di kaki non inverting-tegangan di kaki inverting di kali Aol, sehingga hasilnya Vo=15-(+0,925) dikali Aol yang sangat besar dan didapatkan tegangan output yang terbaca sebesar +15V.
      Kemudian dari Vo rangkaian detektor diumpankan ke resistor R4 dan diteruskan ke rangkaian Fixed Bias, dan tegangan yang terbaca di kaki base transistor Q2 sebesar 0,98V. Seperti yang kita ketahui bahwa tegangan tersebut sudah cukup untuk mengaktifkan transistor Q2 dan menyebabkan adanya arus yang mengalir dari power supply +12V kemudian diteruskan ke relay, ke kaki collector dan kaki emitor dan diteruskan ke ground. Dengan adanya arus yang mengalir maka switch relay masih berada di sebelah kiri dan rangkaian membentuk loop dan buzzer dan pompa air pun on.

      B. Prinsip Kerja Sensor LM35
      Saat belum memilih air panas, maka LM 35 aka bersuhu di bawah 80℃ yaitu 78℃ dan output yang keluar dari kaki vout LM35 diteruskan ke R13 dan masuk ke ke kaki non inverting, sehingga tegangan yang terbaca sebesar +828mV sedangkan di kaki inverting terbaca sebesar +833mV.  Kemudian dengan menggunakan rumus opamp detektor yaitu Vo=(Vnon inverting - V inverting).Aol yang sangat besar dan didapatkan hasil tegangan output yang terbaca sebesar -11,9 V dan merupakan -Vsaturasi. Kemudian dari Vo rangkaian detektor diumpankan ke resistor R27 dan arus yang terbaca di kaki Gate Transistor Q1 yaitu sebesar -11,9 V. Seperti yang kita ketahui, bahwa tegangan tersebut belum cukup untuk mengaktifkan transistor Q1 dan menyebabkan tidak adanya arus yang mengalir dari power supply +12V ke relay, ke kaki drain dan ke kaki source terus ke ground. Dengan tidak adanya arus yang mengalir, maka switch relay masih berada di sebelah kanan dan rangkaian tidak membentuk loop dan Oven mati dan pompa air juga tidak mengeluarkan air panas .

      Saat memilih air panas, maka sensor LM 35 akan aktif pada suhu 80℃ dan output yang keluar dari kaki vout transistor akan diteruskan ke resistor R3 dan diperkecil arusnya. Kemudian diteruskan ke kaki non inverting, sehingga tegangan yang terbaca adalah +849mV sedangkan di kaki inverting tegangan yang terbaca sebesar +833mV. Kemudian dengan menggunakan rumus opamp detektor yaitu Vo= (Vnon inverting- Vinverting). Aol yang sangat besar, didaptkan tegangan output yang terbaca sebesar +11 V. Kemudian, dari Vo rangkaian detektor diumpankan ke Resistor R27 dan diperkecil arus dan diteruskan ke kaki Gate Transistor Q1. Sehingga tegangan yang terbaca adala +11 V. Seperti yang sudah kita ketahui bahwa tegangan tersebut sudah cukup untuk mengaktifkan transistor Q1 dan menyebabkan adanya arus yang mengalir dari power supply +12V ke relay, ke kaki drain, ke kaki source, dan kemudian diteruskan ke ground. Dengan adanya arus yang mengalir, maka switch relay akan berpindah ke kiri dan menghidupkan oven dan pompa air mulai mengeluarkan air panas.

      C. Prinsip Kerja NTC
      Saat belum memilih air dingin, maka NTC akan bersuhu di bawah 3℃ dan output yang keluar dari kaki NTC yang diteruskan ke resistor R13 dan diatur resistansinya di pot hg rv5, sehingga tegangan yang terbaca di kaki non inverting sebesar +440mV. sedangkan di kaki inverting tegangan yang terbaca sebesar +650mV. Kemudian dengan menggunakan rumus opamp detektor yaitu Vo=(Vnon inverting - V inverting).Aol yang sangat besar dan didapatkan hasil tegangan output yang terbaca sebesar -12 V dan merupakan -Vsaturasi. Kemudian dari Vo rangkaian detektor diumpankan ke resistor R10 dan arus yang terbaca di kaki Gate Mosfet Q3 yaitu sebesar -12 V. Seperti yang kita ketahui, bahwa tegangan tersebut belum cukup untuk mengaktifkan Mosfet Q3 dan menyebabkan tidak adanya arus yang mengalir dari power supply +12V ke relay, ke kaki drain dan ke kaki source terus ke ground. Dengan tidak adanya arus yang mengalir, maka switch relay masih berada di sebelah kanan dan rangkaian tidak membentuk loop dan LED mati dan pompa air juga tidak mengeluarkan air dingin.

      Saat memilih air dingin, maka NTC akan bersuhu  3℃ dan output yang keluar dari kaki NTC yang diteruskan ke resistor R13 dan diatur resistansinya di pot hg rv5, sehingga tegangan yang terbaca di kaki non inverting sebesar +660mV. sedangkan di kaki inverting tegangan yang terbaca sebesar +650mV. Kemudian dengan menggunakan rumus opamp detektor yaitu Vo=(Vnon inverting - V inverting).Aol yang sangat besar dan didapatkan hasil tegangan output yang terbaca sebesar +11 V dan merupakan -Vsaturasi. Kemudian dari Vo rangkaian detektor diumpankan ke resistor R10 dan arus yang terbaca di kaki Gate Mosfet Q3 yaitu sebesar +11 V. Seperti yang kita ketahui, bahwa tegangan tersebut cukup untuk mengaktifkan Mosfet Q3 dan menyebabkan adanya arus yang mengalir dari power supply +12V ke relay, ke kaki drain dan ke kaki source terus ke ground. Dengan adanya arus yang mengalir, maka switch relay masih berada di sebelah kanan dan rangkaian membentuk loop dan LED hidup dan pompa air juga  mengeluarkan air dingin.

      D. Prinsip Kerja Sensor Water
      Saat sensor water belum mendeteksi adanya air yang penuh di gelas, maka tegangan yang keluar di kaki s sensor water yang diteruskan ke induktor L1 dan kapasitor C1 dan tegangan yang terbaca sebesar 0 V .Kemudian diteruskan ke R16 dan tegangan inputnya juga terbaca 0 V. Kemudian arus diteruskan rangkaian op-amp non inverting amplifier dan menggunakan rumus Vo = (R21/R22+1).Vin, Vo = (20k/10k + 1).0 sehingga tegangan yang keluar dari Vo sebesar 0 volt. Kemudian Vo rangkaian opamp non inverting amplifier diumpankan ke R20 dan diteruskan ke rangkaian detektor dan tegangan yang terbaca di kaki non inverting sebesar 0 mV sedangkan di kaki inverting tegangan yang terbaca sebesar +1000 mV. Kemudian dengan menggunakan rumus Detektor yaitu Vo= tegangan di kaki non inverting-tegangan di kaki inverting di kali Aol, sehingga hasilnya Vo=0-(+1000) dikali Aol yang sangat besar dan didapatkan tegangan output yang terbaca sebesar -15V. Kemudian dari Vo rangkaian detektor diumpankan ke resistor R19 dan diteruskan ke rangkaian Fixed Bias, dan tegangan yang terbaca di kaki base transistor Q3 sebesar -14,4V. Seperti yang kita ketahui bahwa tegangan tersebut belum cukup untuk mengaktifkan transistor Q2 dan menyebabkan tidak adanya arus yang mengalir dari power supply +12V kemudian diteruskan ke relay, ke kaki collector dan kaki emitor dan diteruskan ke ground. Dengan tidak adanya arus yang mengalir maka switch relay masih berada di sebelah kanan dan rangkaian tidak membentuk loop dan LED mati dan pompa air masih hidup.

      Saat sensor water mendeteksi adanya air yang penuh di gelas, maka tegangan yang keluar di kaki s sensor water yang diteruskan ke induktor L1 dan kapasitor C1 dan tegangan yang terbaca sebesar 2,77 V .Kemudian diteruskan ke R16 dan tegangan inputnya juga terbaca 2,77 V. Kemudian arus diteruskan rangkaian op-amp non inverting amplifier dan menggunakan rumus Vo = (R21/R22+1).Vin, Vo = (20k/10k + 1).2,77 sehingga tegangan yang keluar dari Vo sebesar 8,29 volt. Kemudian Vo rangkaian opamp non inverting amplifier diumpankan ke R20 dan diteruskan ke rangkaian detektor dan tegangan yang terbaca di kaki non inverting sebesar 0 mV sedangkan di kaki inverting tegangan yang terbaca sebesar +1000 mV. Kemudian dengan menggunakan rumus Detektor yaitu Vo= tegangan di kaki non inverting-tegangan di kaki inverting di kali Aol, sehingga hasilnya Vo=8,29-(+1000) dikali Aol yang sangat besar dan didapatkan tegangan output yang terbaca sebesar +15V. Kemudian dari Vo rangkaian detektor diumpankan ke resistor R19 dan diteruskan ke rangkaian Fixed Bias, dan tegangan yang terbaca di kaki base transistor Q4 sebesar 0,91V. Seperti yang kita ketahui bahwa tegangan tersebut belum cukup untuk mengaktifkan transistor Q4 dan menyebabkan  adanya arus yang mengalir dari power supply +12V kemudian diteruskan ke relay, ke kaki collector dan kaki emitor dan diteruskan ke ground. Dengan  adanya arus yang mengalir maka switch relay masih berada di sebelah kiri dan rangkaian  membentuk loop dan LED hidup dan pompa air mati.

      5. Video[Back]



      6. Download File[Back]



      No comments:

      Post a Comment

        BAHAN PRESENTASI KULIAH TEKNIK ELEKTRO UNAND Disusun Oleh: Muhammad Dafa NIM : 2010951044 Dosen Pembimbing: 1. Dr. Darwison, MT 2. Zaini, ...